

FCC TEST REPORT

On Behalf of

Shenzhen UVLED Optical Technology Co., Ltd

Laptop Guard

Model No.: SZQ05-mini sun 1

Prepared for	:	Shenzhen UVLED Optical Technology Co., Ltd
Address	:	Room 301, FL 3, Phase 1, Bangkai Science and Technology
		Park Phoenix Street Admin, Guangming District, Shenzhen

Prepared By	: Shenzhen Alpha Product Testing Co., Ltd.
Address	 Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103, Shenzhen, Guangdong, China

:	A2006302-C01-R03
:	July 15, 2020
:	July 15, 2020
:	July 16, 2020
:	V0
	::

TABLE OF CONTENTS

De	script	ion	Page
1.	Gene	ral Information	
_,	1.1.	Description of Device (EUT)	
	1.2.	Accessories of Device (EUT)	
	1.3.	Tested Supporting System Details.	6
	1.4.	Block Diagram of connection between EUT and simulators	
2.	Sumr	nary Of Standards And Results	7
	2.1.	Description of Standards and Results	7
	2.2.	Test Mode Description	8
	2.3.	Test Equipment List	9
	2.4.	Test Facility	10
	2.5.	Measurement Uncertainty	10
3.	Powe	r Line Conducted Emission Test	11
	3.1.	Test Limits	11
	3.2.	Block Diagram of Test Setup	11
	3.3.	Configuration of EUT on Test	12
	3.4.	Operating Condition of EUT	12
	3.5.	Test KZ700-Hcedure	12
	3.6.	Test Results	13
	3.7.	Block Diagram of Test Setup	16
	3.8.	Configuration of EUT on Test	17
	3.9.	Operating Condition of EUT	17
	3.10.	Test Procedure	17
	3.11.	Test Results	18
4.	Photo	ograph	22
	4.1.	Photo of Power Line Conducted	22
	4.2.	Photo of Radiated Emission Test (In Semi Anechoic Chamber)	22
5.	Photo	os Of The EUT	23

TEST REPORT DECLARATION

Applicant	:	Shenzhen UVLED Optical Technology Co., Ltd			
Address	:	Room 301, FL 3, Phase 1, Bangkai Science and Technology Park Phoenix			
		Street Admin, Guangming District, Shenzhen			
Manufacturer	:	Shenzhen UV Guard Technology Co., Ltd			
Address	:	3/4F, Building A, NO. 2 NO.9, Bangkai Road, High-teach Industrial Park,			
		Phoenix Street, Guangming New District, Shenzhen			
EUT Description	:	Laptop Guard			
		(A) Model No. : SZQ05-mini sun 1			
		(B) Trademark : N/A			

Measurement Standard Used:

FCC Rules and Regulations Part 15 Subpart B Class B, ANSI C63.4:2014

The device described above is tested by Shenzhen Alpha Product Testing Co., Ltd. to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The test results are contained in this test report and Shenzhen Alpha Product Testing Co., Ltd. is assumed full responsibility for the accuracy and completeness of test. Also, this report shows that the EUT is technically compliant with the FCC Part 15 requirements.

This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Shenzhen Alpha Product Testing Co., Ltd.

Tested by (name + signature):	Ben Sun Project Engineer	Benjath PRODUCT I Fig
Approved by (name + signature):	Simple Guan Project Manager	ALPHA ALPHA TESTING
Date of issue:	July 16, 2020	

Revision History

Revision	Issue Date	Revisions	Revised By
V0	July 16, 2020	Initial released Issue	Ben Sun

1. General Information

1.1.Description of Device (EUT)

Model Number	:	SZQ05-mini sun 1
Diff	:	N/A

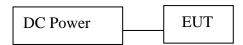
Highest Frequency	:	Less than 108MHz
Test Voltage	:	DC 5V From DC Power

EUT information	:	DC 5V
Trademark	:	N/A

Software version	:	N/A
Hardware version	:	N/A

1.2. Accessories of Device (EUT)

Power Source : N/A


1.3.Tested Supporting System Details.

No.	Description	Manufacturer	Model	Serial Number
1.	DC Power	JUNKE	JK12010S	20140927-6

1.4.Block Diagram of connection between EUT and simulators

For Tests

For Lighting Mode

Signal Cable Description of the above Support Units

No.	Port Name	Cable	Length	Shielded (Yes or No)	Detachable (Yes or No)
/	/	/	/	/	/
/	/	/	/	/	/

2. Summary Of Standards And Results

2.1.Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below:

	EMISSION			
Description of Test Item	Standard Limits		Results	
Power Line Conducted	FCC Part 15	Class B	D	
Emission Test	ANSI C63.4:2014	Class D	ſ	
Dedicted Environment	FCC Part 15	Class D	D	
Radiated Emission Test	ANSI C63.4:2014	Class B	Γ	
Note: 1. P is an abbreviation	n for Pass.			
2. F is an abbreviation	n for Fail.			

2.2.Test Mode Description

For Conduct	ted Emission and Radiated Emission Test	
Mode No.	Test Mode	Test Voltage
1.	Lighting	DC 5V From DC Power

2.3.Test Equipment List

For Pov	wer Line Condu	cted Emission T	est Equipment:			
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Test Receiver	Rohde & Schwarz	ESCI	101165	2019.09.05	1 Year
2.	L.I.S.N.#1	Schwarz beck	NSLK8126	8126466	2019.09.05	1 Year
3.	L.I.S.N.#2	ROHDE&SCH WARZ	ENV216	101043	2019.09.05	1 Year
4.	Pulse Limiter	Schwarz beck	9516F	9618	2019.09.05	1 Year

For Fr						
Item Equipment Manufacturer Model No. Serial No. Last Cal. Interva					Cal. Interval	
1	Test Receiver	Rohde&Schwarz	ESR	1316.3003K0 3-102082-Wa	2019.09.06	1 Year
2	Bilog Antenna	Schwarz beck	VULB 9168	9168-627	2020.04.12	2 Year

For Fre	quency Range a	bove 1GHz Radiate	d Emission Te	st Equipment:		
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1	Spectrum analyzer			1166.1660.26	2019.09.06	1 Year
2	Horn Antenna	Schwarz beck	BBHA 9120 D	BBHA 9120 D(1201)	2020.04.12	2 Year
3	Amplifier	Agilent	8449B	3008A02664	2019.09.06	1 Year

2.4.Test Facility

Shenzhen Alpha Product Testing Co., Ltd.

Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103, Shenzhen, Guangdong, China

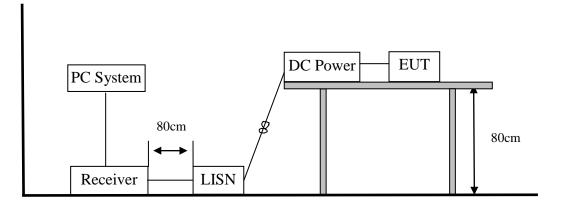
June 21, 2018 File on Federal Communication Commission Registration Number: 293961

2.5.Measurement Uncertainty

Test Item	Uncertainty
Uncertainty for Conduction emission test	2.74dB
Uncertainty for Radiation Emission test	3.77 dB (Distance: 3m Polarize: V)
(<1G)	3.80 dB (Distance: 3m Polarize: H)
Uncertainty for Dediction Emission test (>1C)	4.13 dB (Distance: 3m Polarize: V)
Uncertainty for Radiation Emission test (>1G)	4.16 dB (Distance: 3m Polarize: H)
(95% confiden	ice levels, k=2)

3. Power Line Conducted Emission Test

3.1.Test Limits


			Maximum RF Line Voltage			
F	requen	cy	Quasi-Peak Level	Average Level		
			dB(µV)	dB(µV)		
150kHz	~	500kHz	66 ~ 56*	56 ~ 46*		
500kHz	~	5MHz	56	46		
5MHz	~	30MHz	60	50		

Notes: 1. Emission level=Read level + LISN factor-Preamp factor + Cable loss

2. * Decreasing linearly with logarithm of frequency.

3. The lower limit shall apply at the transition frequencies.

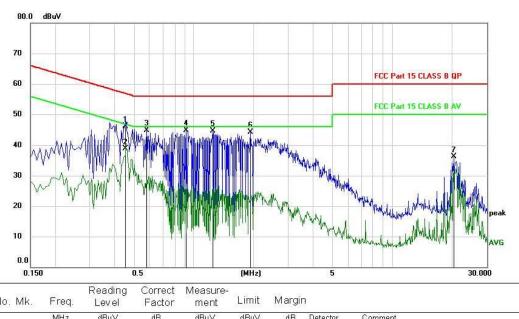
3.2.Block Diagram of Test Setup

3.3.Configuration of EUT on Test

The following equipment are installed on Power Line Conducted Emission Test to meet the commission requirement and operating regulations in a manner which tends to maximize its emission characteristics in a normal application.

3.4. Operating Condition of EUT

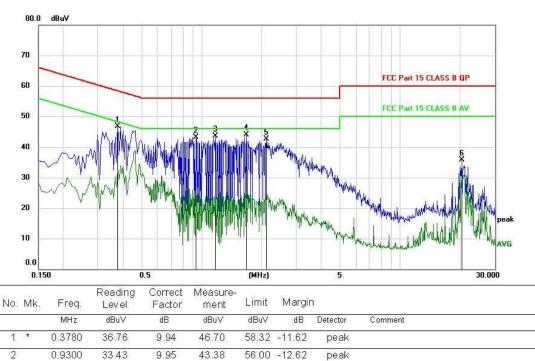
- (1) Setup the EUT as shown as Section 3.2.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode and 15 minutes before taking the test.


3.5.Test KZ700-Hcedure

- (1) The EUT was placed on a non-metallic table, 80cm above the ground plane. The EUT Power connected to the power mains through a line impedance stabilization network (L.I.S.N. 1#). This provided a 50-ohm coupling impedance for the EUT (Please refer to the block diagram of the test setup and photographs). The other peripheral devices power cord connected to the power mains through a line impedance stabilization network (L.I.S.N.#2). Both sides of power line were checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.4:2014 on conducted Emission test.
- (2) The frequency range from 150kHz to 30MHz is checked, the bandwidth of test receiver (R&S TEST RECEIVER ESCI) is set at 9kHz.

3.6.Test Results

Test Date : 2020.07.15	Temperature	: 24°C
Test Engineer : Ben Sun	Humidity	: 56%
Test Mode : Lighting		
Test Results : PASS		
Note: 1. The test results are listed in next pages.		
2. If the limits for the measurement with the av	erage detector ar	e met when using a
receiver with a quasi-peak detector, the test uni	t shall be deemed	d to meet both limits and
the measurement with the average detector need	d not be carried of	out.


(Reference Only

Phase: L

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margir	ו		
		MHz	dBu∨	dB	dBu∨	dBuV	dB	Detector	Comment	
1		0.4560	36.14	9.95	46.09	56.77	-10.68	QP		
2	*	0.4560	28.89	9.95	38.84	46.77	-7.93	AVG		
3		0.5820	34.94	9.93	44.87	56.00	-11.13	peak		
4		0.9180	34.98	9.96	44.94	56.00	-11.06	peak		
5		1.2480	34.79	9.90	44.69	56.00	-11.31	peak		
6		1.9320	34.37	9.89	44.26	56.00	-11.74	peak		
7		20.4240	25.85	10.47	36.32	60.00	-23.68	peak		

*:Maximum data x:Overlimit I:overmargin Note: Measurement=Reading Level+Correc Factor. Factor=(LISN or ISN or PLC or Current Probe)Factor+Cable

56.00 -12.28

56.00 -11.98

56.00 -13.22

60.00 -24.11

peak

peak

peak

peak

*:Maximum data x:Over limit 1:over margin (Reference Only Note: Measurement=Reading Level+Correc Factor, Factor=(LISN or ISN or PLC or Current Probe)Factor+Cable

1.1700

1.6740

2.1120

20.4360

3

4

5

6

33.83

34.13

32.90

25.42

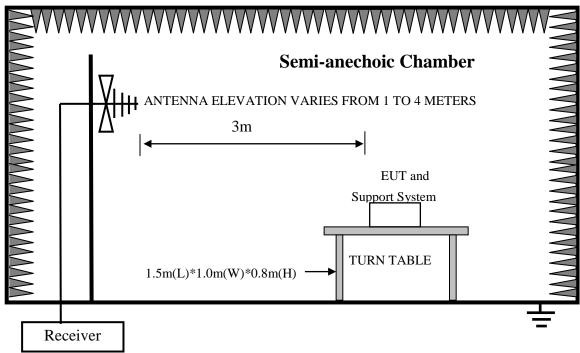
9.89

9.89

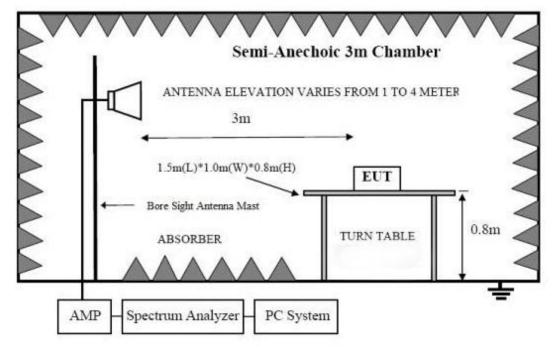
9.88

10.47

43.72


44.02

42.78


35.89

3.7.Block Diagram of Test Setup

In Semi Anechoic Chamber (3m) Test Setup Diagram for 30MHz~1000MHz

In Semi Anechoic Chamber (3m) Test Setup Diagram for Above 1GHz

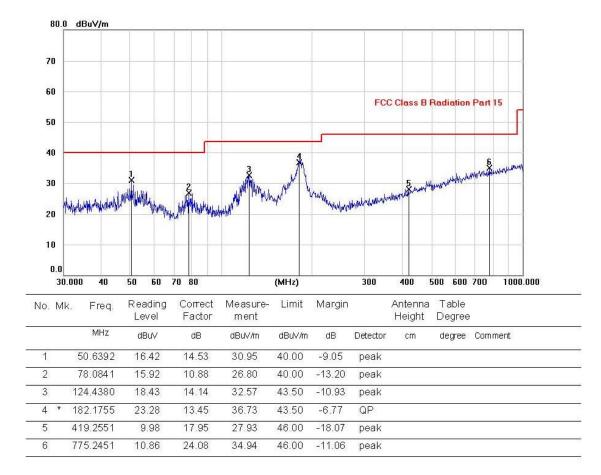
3.8. Configuration of EUT on Test

The following equipment are installed on Radiated Emission Test to meet the commission requirements and operating regulations in a manner that tends to maximize its emission characteristics in normal application.

3.9. Operating Condition of EUT

- (1) Setup the EUT as shown as Section 4.2.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode and 15 minutes before taking the test.

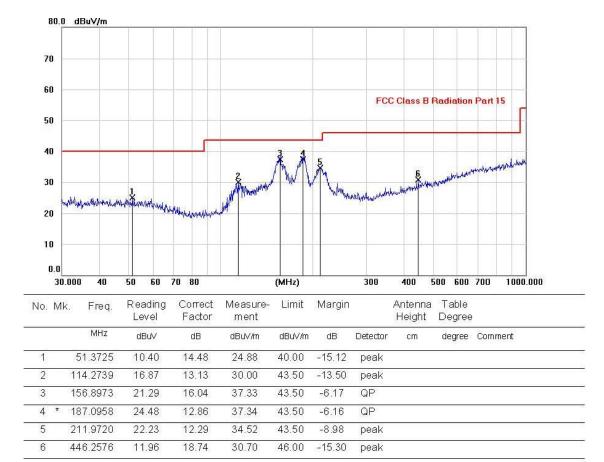
3.10.Test Procedure


- (1) The EUT was placed on a non-metallic table, 80 cm above the ground plane inside a semi-anechoic chamber. An antenna was located 3m from the EUT on an adjustable mast. A pre-scan was first performed in order to find prominent radiated emissions. For final emissions measurements at each frequency of interest, the EUT were rotated and the antenna height was varied between 1m and 4m in order to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.4:2014 on Radiated Emission test.
- (2) For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- (3) The frequency range from 30MHz to 1000MHz is checked, the bandwidth of test receiver (R&S TEST RECEIVER ESR) is set at 120kHz.
- (4) The frequency range from above 1GHz is checked, the bandwidth of spectrum analyzer (Spectrum Analyzer FSU) is set at 1MHz.
- (5) The frequency range from 30MHz to 1000MHz was pre-scanned with a peak detector and all final readings of measurement from Test Receiver are Quasi-Peak values, the frequency range from 1GHz to 6GHz was pre-scanned with a peak detector and all final readings of measurement from Spectrum Analyzer are peak and average values checked, all measurement distance is 3m in 3m semi anechoic chamber.
- (6) The test results are reported on Section 4.7.

3.11.Test Results

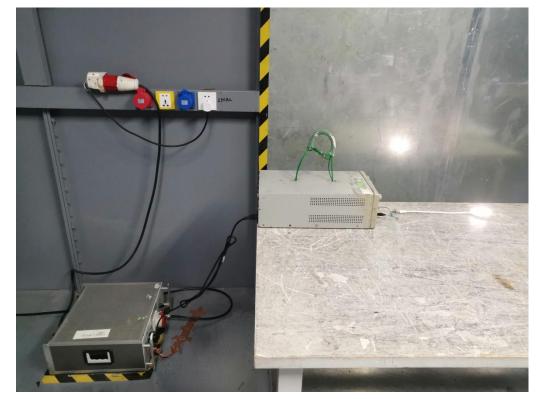

Frequency Range	:	30MHz~1000MHz				
Test Date	:	2020.07.15	Temperature	:	24°C	
Test Engineer	:	Ben Sun	Humidity	:	56%	
Test Mode	:	Lighting				
Test Results	:	PASS				
Note: 1. The test results are listed in next pages.						

Antenna polarity: Vertical

Note:1. *:Maximum data; x:Over limit; I:over margin.

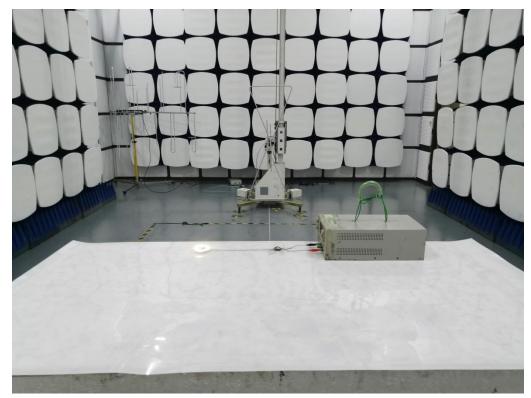
2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

Antenna polarity: Horizontal

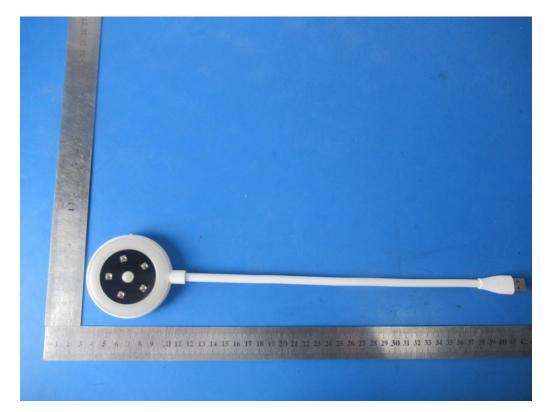

Note:1. *:Maximum data; x:Over limit; !:over margin.

2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

Frequency Range	:	Above 1GHz					
Test Date	:	N/A	Temperature	:	N/A		
Test Engineer	:	N/A	Humidity	:	N/A		
Test Mode	:	N/A					
Test Results	:	N/A					
1. The highest frequency of the internal sources of the EUT is less than 108 MHz, the							
Note: measurement shall only be made up to 1 GHz. So the frequency above 1GHz radiation							
test not applicable.							


4. PHOTOGRAPH

4.1.Photo of Power Line Conducted



4.2.Photo of Radiated Emission Test (In Semi Anechoic Chamber)

30-1000MHz

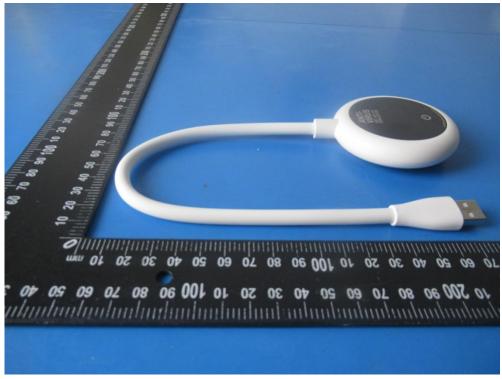
5. Photos Of The EUT

EUT View

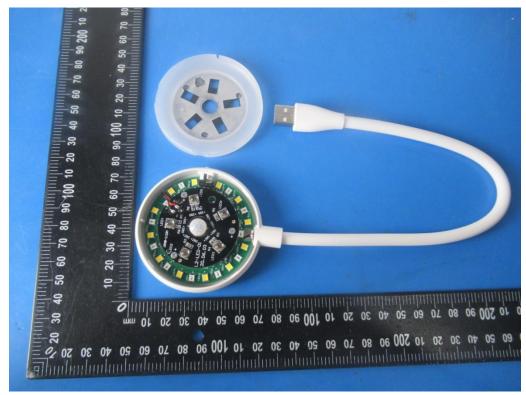


EUT View

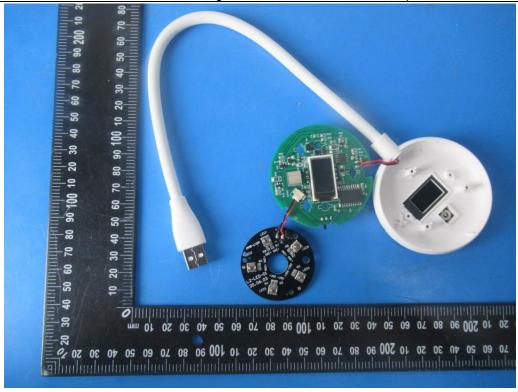
Page 24 of 29


EUT View

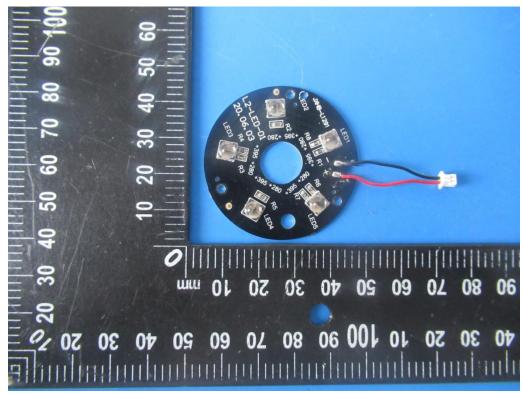
EUT View


EUT View

EUT View

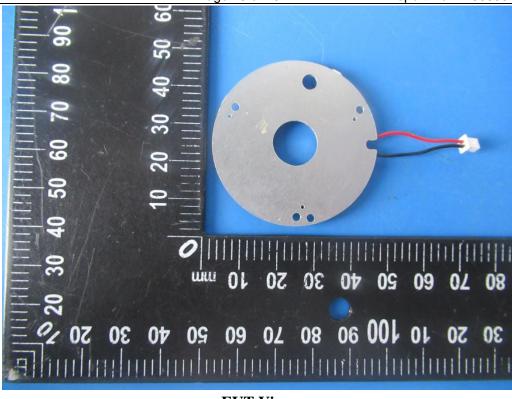


EUT View

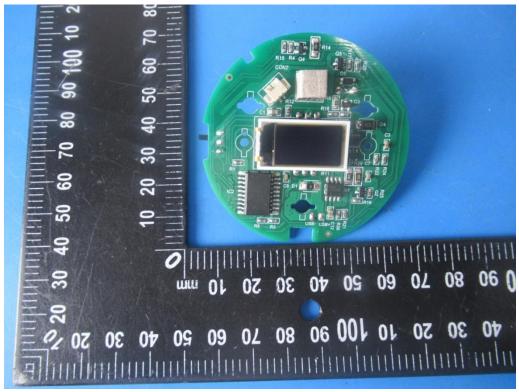


EUT View

Page 27 of 29



EUT View



EUT View

Page 28 of 29

EUT View

EUT View

ПЛИНИ 09 02 08 06 (20 10 un OL 40 30 50 10 100 80 80 20 e0 20 2 **EUT View**

Page 29 of 29

----END OF REPORT----