

APPLICATION FOR ELECTROMAGNETIC COMPATIBILITY DIRECTIVE

On Behalf of

Shenzhen UVLED Optical Technology Co., Ltd

Laptop Guard

Model No.: SZQ05-mini sun 1

Prepared for	:	: Shenzhen UVLED Optical Technology Co., Ltd		
Address		Room 301, FL 3, Phase 1, Bangkai Science and Technology		
Address	•	Park Phoenix Street Admin, Guangming District, Shenzhen		

Prepared By	:	Shenzhen Alpha Product Testing Co., Ltd.		
Address	:	Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103, Shenzhen, Guangdong, China		

Report Number	:	A2006302-C01-R02
Date of Receipt	:	July 15, 2020
Date of Test	:	July 15, 2020
Date of Report	:	July 16, 2020
Version Number	:	V0

TABLE OF CONTENTS

De	script	tion	Page
1.	Sum	mary Of Standards And Results	7
	1.1.	•	
2.	Gene	eral Information	8
	2.1.	Description of Device (EUT)	8
	2.2.	Accessories of Device (EUT)	8
	2.3.	Tested Supporting System Details	9
	2.4.	Block Diagram of connection between EUT and simulators	9
	2.5.	Test mode Description	10
	2.6.	Test Facility	11
	2.7.	Measurement Uncertainty	11
	2.8.	Immunity Performance Criteria Description	12
	2.9.	Classification Of Apparatus Description	13
3.	Cond	lucted Disturbance At Mains Terminals Test	14
	3.1.	Test Equipment	
	3.2.	Block Diagram of Test Setup	
	3.3.	Power Line Conducted Emission Test Limits	14
	3.4.	Configuration of EUT on Test	15
	3.5.	Operating Condition of EUT	15
	3.6.	Test Procedure	15
	3.7.	Conducted Disturbance at Mains Terminals Test Results	16
4.	Distu	Irbance Power Test	17
	4.1.	Test Equipment	
	4.2.	Block Diagram of Test Setup	17
	4.3.	Disturbance Power Test Limits	17
	4.4.	Configuration of EUT on Test	18
	4.5.	Operating Condition of EUT	18
	4.6.	Test Procedure	
	4.7.	Disturbance Power Test Results	19
5.	Radi	ated Disturbance Test	21
	5.1.	Test Equipment	
	5.2.	Block Diagram of Test Setup	
	5.3.	Radiated Emission Limit	
	5.4.	Configuration of EUT on Test	
	5.5.	Operating Condition of EUT	
	5.6.	Test Procedure	
	5.7.	Radiated Disturbance Test Results	24
6.		۲۶	
7.		nonic Current Test	
	7.1.	Test Equipment	
	7.2.	Block Diagram of Test Setup	
	7.3.	Harmonic Current Test Limits	26

	7.4.	Configuration of EUT on Test	.27
	7.5.	Operating Condition of EUT	.27
	7.6.	Test Procedure	.27
	7.7.	Harmonic Current Test Results	.28
8.	Volta	age Fluctuations & Flicker Test	.29
	8.1.	Test Equipment	.29
	8.2.	Block Diagram of Test Setup	.29
	8.3.	Voltage Fluctuation and Flicker Test Limits	.29
	8.4.	Configuration of EUT on Test	.30
	8.5.	Operating Condition of EUT	.30
	8.6.	Test Procedure	.30
	8.7.	Voltage Fluctuation and Flicker Test Results	.31
9.	Elect	rostatic Discharge Test	.32
	9.1.	Test Equipment	.32
	9.2.	Block Diagram of Test Setup	
	9.3.	Electrostatic Discharge Test Limits	
	9.4.	Configuration of EUT on Test	
	9.5.	Operating Condition of EUT	
	9.6.	Test Procedure	
	9.7.	Electrostatic Discharge Test Results	
10.		Yield Strength Susceptibility Test	
		. Test Equipment	
		Block Diagram of Test Setup	
		. RF Field Strength susceptibility Test Limits	
		Configuration of EUT on Test	
		. Operating Condition of EUT	
		. Test Procedure	
		. RF Field Strength susceptibility Test Limits	
		. Configuration of EUT on Test	
		. Operating Condition of EUT	
		. RF Field Strength Susceptibility Test Results	
11		rical Fast Transient/Burst immuNity Test	
11.		. Test Equipment	
		Block Diagram of Test Setup	
		. Test Standard	
		Electrical Fast Transient/Burst Test Limits	
		. Configuration of EUT on Test	
		Operating Condition of EUT	
		. Test Procedure	
		. Electrical Fast Transient/Burst immunity Test Results	
12.		GE Test	
		. Test Equipments	
		. Block Diagram of Test Setup	
	12.3	. Surge Test Limits	.43

	12.4. Configuration of EUT on Test	43
	12.5. Operating Condition of EUT	43
	12.6. Test Procedure	43
	12.7. Surge Test Results	44
13.	Injected currents susceptibility test	45
	13.1. Test Equipments	45
	13.2. Block Diagram of Test Setup	45
	13.3. Test Standard	45
	13.4. Injected currents susceptibility Test Limits	46
	13.5. Configuration of EUT on Test	46
	13.6. Operating Condition of EUT	46
	13.7. Test Procedure	46
	13.8. Injected currents susceptibility Test Results	47
14.	Voltage dips and interruptions test	18
- ··	voltage ups and interruptions test	••••••
	14.1. Test Equipments	
		48
	14.1. Test Equipments	48 48
	14.1. Test Equipments14.2. Block Diagram of Test Setup	48 48 48
	14.1. Test Equipments14.2. Block Diagram of Test Setup14.3. Test Standard	48 48 48 49
	 14.1. Test Equipments 14.2. Block Diagram of Test Setup 14.3. Test Standard 14.4. Voltage dips and interruptions Test Limits 	48 48 48 49 49
	 14.1. Test Equipments 14.2. Block Diagram of Test Setup 14.3. Test Standard 14.4. Voltage dips and interruptions Test Limits 14.5. Configuration of EUT on Test	48 48 48 49 49 49 49
	 14.1. Test Equipments 14.2. Block Diagram of Test Setup 14.3. Test Standard 14.4. Voltage dips and interruptions Test Limits 14.5. Configuration of EUT on Test 14.6. Operating Condition of EUT 	48 48 49 49 49 49 49
	 14.1. Test Equipments	48 48 49 49 49 49 49 50
	 14.1. Test Equipments 14.2. Block Diagram of Test Setup 14.3. Test Standard	48 48 49 49 49 49 49 50 51
	 14.1. Test Equipments	48 48 49 49 49 49 50 51
15.	 14.1. Test Equipments 14.2. Block Diagram of Test Setup	48 48 49 49 49 49 50 51 51

Applicant	:	Shenzhen UVLED Optical Technology Co., Ltd			
Address	:	Room 301, FL 3, Phase 1, Bangkai Science and Technology Park Phoenix Street Admin, Guangming District, Shenzhen			
Manufacturer	:	Shenzhen UV Guard Technology Co., Ltd			
Address	:	3/4F, Building A, NO. 2 NO.9, Bangkai Road, High-teach Industrial Park, Phoenix Street, Guangming New District, Shenzhen			
EUT Description	:	Laptop Guard			
		(A) Model No. : SZQ05-mini sun 1			
		(B) Trademark : N/A			

TEST REPORT DECLARATION

Measurement Standard Used:

EN 55014-1:2017 EN 55014-2:2015

The device described above is tested by Shenzhen Alpha Product Testing Co., Ltd. to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The test results are contained in this test report and Shenzhen Alpha Product Testing Co., Ltd. is assumed full responsibility for the accuracy and completeness of test. Also, this report shows that the EUT is technically compliant with the EN 55014-1and EN 55014-2 requirements.

This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Shenzhen Alpha Product Testing Co., Ltd.

Tested by (name + signature):	Ben Sun Project Engineer	Bentsin
Approved by (name + signature):	Simple Guan Project Manager	ALPHA ALPHA TESTING
Date of issue:	July 16, 2020	

Revision History

Revision	Issue Date	Revisions	Revised By
V0	July 16, 2020	Initial released Issue	Ben Sun

1. SUMMARY OF STANDARDS AND RESULTS

1.1.Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below:

EMISSION					
Description of Test Item	Standard	Lin	nits	Results	
Conducted disturbance at mains terminals test	EN 55014-1:2017	Section 4.1	.1 Table 1	N/A	
Disturbance power test	EN 55014-1:2017	Section 4.1	.2 Table 2a	Р	
Radiated disturbance	EN 55014-1:2017	Section 4.1	.2 Table 3	N/A	
Clicks	EN 55014-1:2017	Sectio	on 4.2	N/A	
Harmonic current emissions	EN 61000-3-2:2014	Clas	ss A	N/A	
Voltage fluctuations & flicker	EN 61000-3-3:2013	Secti	on 5	N/A	
	IMMUNITY (EN 5	5014-2:2015)			
Description of Test Item	Standard	Performance Criteria	Observation Criteria	Results	
Electrostatic discharge (ESD)	IEC 61000-4-2:2008	В	А	Р	
Radio-frequency, Continuous radiated disturbance	IEC 61000-4-3:2006 + A1:2007 + A2:2010	В	А	Р	
Electrical fast transient	IEC 61000-4-4:2012	N/A	N/A	N/A	
Surge	IEC 61000-4-5:2014	N/A	N/A	N/A	
Radio-frequency, Continuous conducted disturbance	IEC 61000-4-6:2013	N/A	N/A	N/A	
Voltage dips, Interruptions		N/A	N/A	N/A	
Voltage dips , 60% reduction	IEC 61000-4-11:2004	N/A	N/A	N/A	
Voltage dips, 30% reduction		N/A	N/A	N/A	
Note: 1. P is an abbreviat	ion for Pass.				
2. F is an abbreviation for Fail.					
3. N/A is an abbrev	iation for Not Applicable				

2. GENERAL INFORMATION

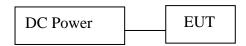
2.1.Description of Device (EUT)

Description : Laptop Guard

Model Number	:	SZQ05-mini sun 1
Diff	:	N/A

- Test Voltage: DC 5V From DC PowerEUT Information: Input: DC 5V
- Highest frequency:Less than 108MHzTrademark:N/A
- Software version : N/A Hardware version : N/A

2.2. Accessories of Device (EUT)


Power Source : N/A

2.3. Tested Supporting System Details

]	No.	Description	Manufacturer	Model	Serial Number
	1	DC Power	JUNKE	JK12010S	20140927-6

2.4.Block Diagram of connection between EUT and simulators

For Tests For Lighting Mode

	Signal Cable Description of the above Support Units					
No.Port NameCableLot		Length	Shielded (Yes or No)	Detachable (Yes or No)		
(a)	N/A	N/A	N/A	N/A	N/A	

EUT: Laptop Guard

2.5.Test mode Description

For Radiated Disturbance Test and EMS test

No.	Test Mode	Test Voltage
1.	Lighting	DC 5V From DC Power

2.6.Test Facility

Shenzhen Alpha Product Testing Co., Ltd.

Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103, Shenzhen, Guangdong, China

2.7.Measurement Uncertainty

(95% confidence levels, k=2)

Item	MU	Remark
Uncertainty for Conducted Emission Test	2.74dB	
Uncertainty for Radiation Emission test in 3m chamber	3.77dB	Polarize: V
(30MHz to 1GHz)	3.80dB	Polarize: H
Uncertainty for Power Clamp Test	3.35 dB	

2.8.Immunity Performance Criteria Description

Performance Level

The test results shall be classified in terms of the loss of function or degradation of performance of the equipment under test, relative to a performance level by its manufacturer or the requestor of the test, or the agreed between the manufacturer and the purchaser of the product. Definition related to the performance level:

- a. Based on the used product standard.
- b. Based on the declaration of the manufacturer, requestor or purchaser

Criterion A:

Definition: normal performance within limits specified by the manufacturer, requestor and purchaser.

The apparatus shall continue to operate as intended during the test and after the test. No degradation of performance or loss of function is allowed below a performance level (or permissible loss of performance) specified by the manufacturer, when the apparatus is used as intended. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and from what the user may reasonably expect from the apparatus if used as intended.

Criterion B:

Definition: temporary loss of function or degradation of performance which ceases after the disturbance ceases, and from which the equipment under test recovers its normal performance, without operator intervention.

The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level (or permissible loss of performance) specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is allowed, however. No change of actual operation state or stored data is allowed. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and from what the user may reasonably expect form the apparatus the apparatus if used as intended.

Criterion C:

Definition: temporary loss of function or degradation of performance, the correction of which requires operator intervention.

Temporary loss of function is allowed, provided the function is self-recoverable or can be restored by the operation of the controls, or by any operation specified in the instructions for use. Criterion D:

Definition: loss of function or degradation of performance, which is not recoverable, owing to damage to hardware or software, or loss of data.

2.9. Classification Of Apparatus Description

Category I: apparatus containing no electronic control circuitry.

Electric circuits consisting of passive components (such as radio interference suppression capacitors or inductors, mains transformers and mains frequency rectifiers) are not considered to be electronic control circuitry.

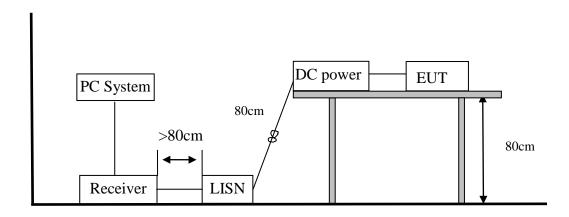
□Category II: transformer toys, dual supply toys, mains powered motor operated appliances, tools, heating appliances and similar electric apparatus (for example — UV radiators, IR radiators and microwave ovens) containing electronic control circuitry with no internal clock frequency or oscillator frequency higher than 15 MHz.

Note: For toys, examples include educational computers, organs, track sets with electronic control units.

☑Category III: Battery powered apparatus (with built-in batteries or external batteries), which in normal use is not connected to the mains, containing an electronic control circuitry with no internal clock frequency or oscillator frequency higher than 15 MHz.

This category includes apparatus provided with rechargeable batteries which can be charged by connecting the apparatus to the mains power. However, this apparatus shall also be tested as an apparatus in Category II while it is connected to the mains network.

Note: For toys, examples include musical soft toys, cord-controlled toys and motor-operated electronic toys.


Category IV: all other apparatus covered by the scope of this standard (EN 55014-2).

3. CONDUCTED DISTURBANCE AT MAINS TERMINALS TEST

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Test Receiver	Rohde & Schwarz	ESCI	101165	2019.09.05	1 Year
2.	L.I.S.N.#1	Schwarzbeck	NSLK8126	8126466	2019.09.05	1 Year
3.	L.I.S.N.#2	ROHDE&SCH WARZ	ENV216	101043	2019.09.05	1 Year
4.	Pulse Limiter	Schwarzbeck	9516F	9618	2019.09.05	1 Year

3.1.Test Equipment

3.2.Block Diagram of Test Setup

3.3. Power Line Conducted Emission Test Limits

	Maximum RF Line Voltage		
Frequency	Quasi-Peak Level	Average Level	
	dB(µV)	dB(µV)	
150kHz ~ 500kHz	66 ~ 56*	59 ~ 46*	
500kHz ~ 5MHz	56	46	
5MHz ~ 30MHz	60	50	

Notes: 1. Emission level=Read level + LISN factor-Preamp factor + Cable loss

2. * Decreasing linearly with logarithm of frequency.

3. The lower limit shall apply at the transition frequencies.

3.4. Configuration of EUT on Test

The following equipment are installed on conducted disturbance at mains terminals to meet the EN 55014-1 requirement and operating regulations in a manner which tends to maximize its emission characteristics in a normal application.

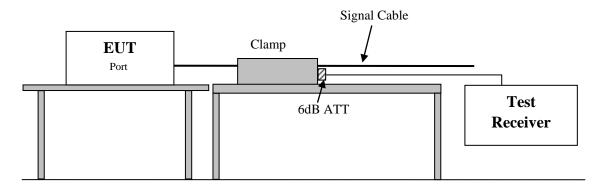
3.5. Operating Condition of EUT

- (1) Setup the EUT as shown as Section 3.2.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode and 15 minutes before taking the test.

3.6.Test Procedure

- (1) The EUT was placed on a non-metallic table, 80cm above the ground plane. The EUT Power connected to the power mains through a line impedance stabilization network (L.I.S.N. 1#). This provided a 50-ohm coupling impedance for the EUT (Please refer to the block diagram of the test setup and photographs). The other peripheral devices power cord connected to the power mains through a line impedance stabilization network (L.I.S.N.#2). Both sides of power line were checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to EN 55014-1 on Conducted Disturbance at Mains Terminals test.
- (2) The frequency range from 150kHz to 30MHz is checked, the bandwidth of test receiver (R&S TEST RECEIVER ESCI) is set at 9kHz.
- (3) The test results are reported on Section 3.7.

3.7.Conducted Disturbance at Mains Terminals Test Results


EUT	:	Laptop Guard	Test Date : N/A		
M/N	:	SZQ05-mini sun 1	Temperature : N/A		
Test Engineer	:	N/A	Humidity : N/A		
Test Voltage	:	N/A	Pressure : N/A		
Test Mode	Test Mode : N/A				
Test Results : N/A					
Note Not ap	Note Not applicable for equipment operated with PC, Battery, or Power Supply.				

4. DISTURBANCE POWER TEST

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1	Test Receiver	Rohde & Schwarz	ESCI	101165	2019.09.05	1 Year
2	Absorbing Clamp	Liithi	MDS-21	4054	2019.09.08	1 Year
3	N50(f-m) 6dB Fixed Attenuator	Rohde & Schwarz	A0835	J01006A0835	2019.09.05	1 Year

4.1.Test Equipment

4.2.Block Diagram of Test Setup

4.3.Disturbance Power Test Limits

For Household and similar appliances and Rated motor power not exceeding 700 W Tools:

	Interference Power Limits		
Frequency	Quasi-Peak Level	Average Level	
	dB(pW)	dB(pW)	
30MHz ~ 300MHz	45 Increasing Linearly	35 Increasing Linearly	
$5000172 \sim 50000172$	with Frequency to 55	with Frequency to 45	

For Rated motor power above 700 W and not exceeding 1 000 W Tools:

	Interference Power Limits		
Frequency	Quasi-Peak Level	Average Level	
	dB(pW)	dB(pW)	
30MHz ~ 300MHz	49 Increasing Linearly	39 Increasing Linearly	
30 MILZ ~ 300 MILZ	with Frequency to 59	with Frequency to 49	

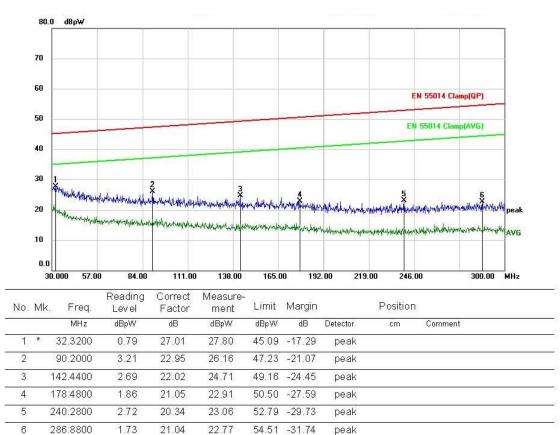
Notes: Emission level=Read level + Clamp factor-Preamp factor + Cable loss

4.4.Configuration of EUT on Test

The EN55014-1 regulations test method must be used to find the maximum emission during radiated power test. Any lead connecting the EUT to an auxiliary apparatus is disconnected if this does not affect the operation of the EUT, or is isolated by means of absorbing clamp close to the EUT, a similar measure was made on each lead which is or may be connected to an auxiliary apparatus, whether or not it is necessary for the operation of the EUT.

4.5. Operating Condition of EUT

- (1) Setup the EUT as shown as Section 4.2.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode and 15 minutes before taking the test.


4.6.Test Procedure

- (1) The EUT is placed on the table which is high 0.8m by insulating support and away from other metallic surface at least 0.8m. It is connected to the power mains through an extension cord of 6m minimums. The absorber clamp was clamps the cord and moves from the far end to EUT to measure the disturbing energy emitted from the cord.
- (2) The frequency range from 30MHz to 300MHz is checked, the bandwidth of test receiver (R&S TEST RECEIVER ESCI) is set at 120kHz.
- (3) The test results are reported on Section 4.7.

4.7. Disturbance Power Test Results

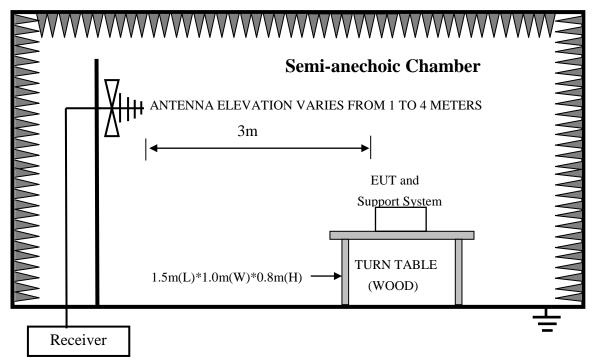
EUT	: Laptop Guard	Test Date	: 2020.07.15				
M/N	: SZQ05-mini sun 1	Temperature	: 24°C				
Test Engineer	: Ben Sun	Humidity	: 56%				
Test Voltage	: DC 5V From DC Power	Pressure	: 101.3KPa				
Test Mode	: Lighting						
Test Results : PASS							
Note: 1. The data is shown in the next page.							
2 If the l	imits for the measurement with the a	2. If the limits for the magnement with the everage detector are met when using a					

2. If the limits for the measurement with the average detector are met when using a receiver with a quasi-peak detector, the test unit shall be deemed to meet both limits and the measurement with the average detector need not be carried out.

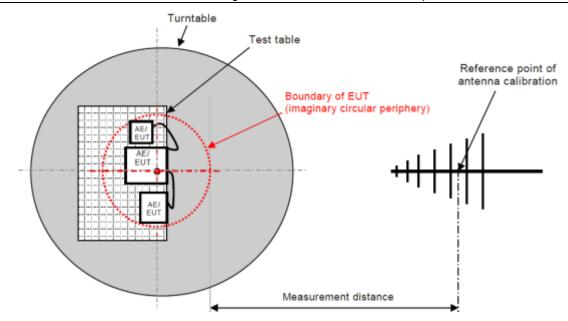
DC Line

*:Maximum data x:Over limit I:over margin Note: Measurement=Reading Level+Correc Factor.

Factor=CLAMP Factor+Cable Loss+Attenuator.


(Reference Only

5. RADIATED DISTURBANCE TEST


Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1	Test Receiver	Rohde&Schwarz	ESR	1316.3003K0 3-102082-Wa	2019.09.06	1 Year
3	Bilog Antenna	Schwarzbeck	VULB 9168	9168-438	2020.04.12	2 Year
4	Cable	Resenberger	SUCOFLEX 104	309972/4	2019.09.05	1 Year

5.1.Test Equipment

5.2.Block Diagram of Test Setup

For 3m distance description:

5.3.Radiated Emission Limit

Frequency	Distance	Field Strengths Limits
MHz	(Meters)	$dB(\mu V)/m$
30 ~ 230	3	40
230 ~ 1000	3	47

Notes:

1. Emission level = Read level + Antenna Factor - Preamp Factor + Cable Loss

2. The smaller limit shall apply at the cross point between two frequency bands.

3. Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.

5.4. Configuration of EUT on Test

The following equipment are installed on Radiated Emission Test to meet the EN 55014-1 requirements and operating regulations in a manner that tends to maximize its emission characteristics in normal application.

5.5.Operating Condition of EUT

- (1) Setup the EUT as shown as Section 5.2.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode and 15 minutes before taking the test.

5.6.Test Procedure

- (1) The EUT was placed on a non-metallic table, 80 cm above the ground plane inside a semi-anechoic chamber. An antenna was located 3m from the EUT on an adjustable mast. A pre-scan was first performed in order to find prominent radiated emissions. For final emissions measurements at each frequency of interest, the EUT were rotated and the antenna height was varied between 1m and 4m in order to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded. In order to find the maximum emission, the relative positions of equipments and all the interface cables were changed according to EN 55014 on Radiated Disturbance test.
- (2) The frequency range from 30MHz to 1000MHz is checked, the bandwidth of test receiver (R&S TEST RECEIVER ESR) is set at 120kHz.
- (3) The frequency range from 30MHz to 1000MHz was pre-scanned with a peak detector and all final readings of measurement from Test Receiver are Quasi-Peak values, all measurement distance is 3m in 3m semi anechoic chamber.
- (4) The test results are reported on Section 5.7.

5.7.Radiated Disturbance Test Results

EUT	: Laptop Guard	Test Date : N/A		
M/N	: SZQ05-mini sun 1	Temperature : N/A		
Test Engineer	: N/A	Humidity : N/A		
Test Voltage	: N/A	Pressure : N/A		
Test Mode	: N/A	· · · · · ·		
Test Results	: N/A			
1. See section 4.6 all emission readings from the equipment under test shall be lower than Note: the applicable limits reduced by the margin. The maximum clock frequency shall be less				

than 30 MHz. So, the frequency range 30-1000MHz radiation test not applicable.

6. CLICKS

The EUT which fulfill the following condition:

--the click rate is no more than 5;

--none of the caused clicks has duration longer than 20 ms,

--90% of the caused clicks have a duration less than 10 ms (measured duration time is 0.4ms), was deemed to comply with the limits.

The disturbance from individual switching operations, caused directly or indirectly, manually or by similar activities on a switch or a control which is included in an appliance or otherwise to be used for:

a) the purpose of mains connection or disconnection only;

b) the purpose of programmer selection only;

c) the control of energy or speed by switching between a limited number of fixed positions;

d) the changing of the manual setting of a continuously adjustable control such as a variable speed device for water extraction or electronic thermostats, is to be disregarded for the purpose of testing the appliance for compliance with the limits of radio disturbance set out in this standard.


Also the disturbance caused by the operation of any switching device or control which is included in an appliance for the purpose of mains disconnection for safety only, is to be disregarded for the purpose of testing the appliance for compliance with the limits of radio disturbance as described in this standard.

7. HARMONIC CURRENT TEST

7.1.Test Equipment	
--------------------	--

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1	Harmonics Flicker Analyser	Voltech	PM6000	20000670049 5	2019.09.06	1 Year

7.2.Block Diagram of Test Setup

7.3.Harmonic Current Test Limits

For Class A equipment:

Harmonic order	Maximum permissible harmonic current A
Odd h	armonics
3	2,30
5	1,14
7	0,77
9	0,40
9 11	0,33
13	0,21
$15 \le n \le 39$	0,15 ¹⁵ / _n
Even h	armonics
2	1,08
4	0,43
6	0,30
$8 \le n \le 40$	0,23 ⁸ / _n

for Class B equipment:

The harmonics of the input current shall not exceed the values given in Class A equipment limit multiplied by a factor of 1,5.

7.4.Configuration of EUT on Test

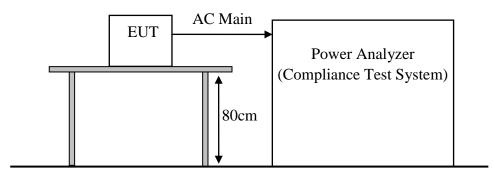
The following equipment are installed on Harmonic Current Test to meet the EN61000-3-2 requirements and operating regulations in a manner that tends to maximize its emission characteristics in normal application.

7.5. Operating Condition of EUT

- (1) Setup the EUT as shown as Section 7.2.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode and 15 minutes before taking the test.

7.6.Test Procedure

- (1) The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the maximum harmonic components under normal operating conditions for each successive harmonic component in turn. The correspondent test program of test instrument to measure the current harmonics emanated from EUT is chosen. The measure time shall be not less than the necessary for the EUT to be exercised.
- (2) The test results are reported on Section 7.7.


7.7.Harmonic Current Test Results

EUT	:	Laptop Guard	Test Date	:	N/A	
M/N	:	SZQ05-mini sun 1	Temperature	:	N/A	
Test Engineer	:	N/A	Humidity	:	N/A	
Test Voltage	:	N/A	Pressure	:	N/A	
Test Mode	:	N/A				
Test Results	:	N/A				
Note: Not app	Note: Not applicable for equipment operated with Battery DC supply.					

8. VOLTAGE FLUCTUATIONS & FLICKER TEST

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1	Harmonics Flicker Analyser	Voltech	PM6000	20000670049 5	2019.09.06	1 Year

8.2.Block Diagram of Test Setup

8.3. Voltage Fluctuation and Flicker Test Limits

Test Item	Limit	Note
P _{st}	1.0	P _{st} means Short-term flicker indicator
P _{lt}	0.65	P _{lt} means long-term flicker indicator
T _{dt}	0.2	T _{dt} means maximum time that dt exceeds 3%
d _{max} (%)	4%	d _{max} means maximum relative voltage change.
d _c (%)	3.3%	d _c means relative steady-state voltage change.

8.4.Configuration of EUT on Test

The following equipment are installed on Harmonic Current Test to meet the EN61000-3-3 requirements and operating regulations in a manner that tends to maximize its emission characteristics in normal application.

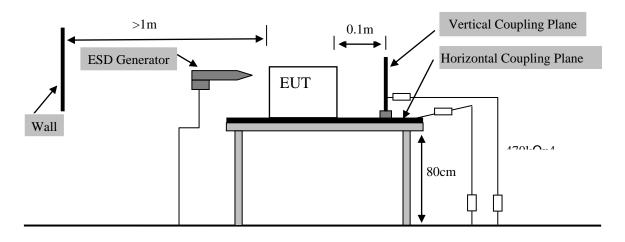
8.5.Operating Condition of EUT

- (1) Setup the EUT as shown as Section 8.2.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode and 15 minutes before taking the test.

8.6.Test Procedure

- (1) The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the most unfavorable sequence of voltage changes under normal conditions During the flick measurement; the measure time shall include that part of whole operation changes. The observation period for short-term flicker indicator is 10 minutes and the observation period for long-term flicker indicator is 2 hours.
- (2) The test results are reported on Section 8.7.

8.7.Voltage Fluctuation and Flicker Test Results


EUT	:	Laptop Guard	Test Date	:	N/A	
M/N	:	SZQ05-mini sun 1	Temperature	:	N/A	
Test Engineer	:	N/A	Humidity	:	N/A	
Test Voltage	:	N/A	Pressure	:	N/A	
Test Mode	:	N/A				
Test Results	:	N/A				
Note: Not app	Note: Not applicable for equipment operated with Battery DC supply.					

9. ELECTROSTATIC DISCHARGE TEST

9.1.Test Equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1	ESD Tester	HAEFELY	PESD161 0	H310546	2019.09.12	1 Year

9.2.Block Diagram of Test Setup

9.3. Electrostatic Discharge Test Limits

Test Type	Test Level	Performance Criterion
Air Discharge	8KV	В
Contact Discharge	4KV	В

Notes: 1. A performance criterion C could be applied to toys mot using score or data entered by the user. Examples are musical soft toys, sounding toys, etc.

2. Test set-up reference IEC 61000-4-2:2008

9.4.Configuration of EUT on Test

The following equipment are installed on Electrostatic Discharge Test to meet the IEC 61000-4-2 requirements and operating regulations in a manner that tends to maximize its emission characteristics in normal application.

9.5. Operating Condition of EUT

- (1) Setup the EUT as shown as Section 9.2.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode and 15 minutes before taking the test.

9.6.Test Procedure

(1) Air Discharge:

The test was applied on non-conductive surfaces of EUT. The round discharge tip of the discharge electrode was approached as fast as possible to touch the EUT. After each discharge, the discharge electrode was removed from the EUT. The generator was re-triggered for a new single discharge and repeated 20 times (10 with positive and 10 negative with positive) for each pre-selected test point. This procedure was repeated until all the air discharge completed.

(2) Contact Discharge:

All the procedure was same as Section 9.6.1. Except that the generator was re-triggered for a new single discharge for each pre-selected test point. The tip of the discharge electrode was touching the EUT before the discharge switch was operated.

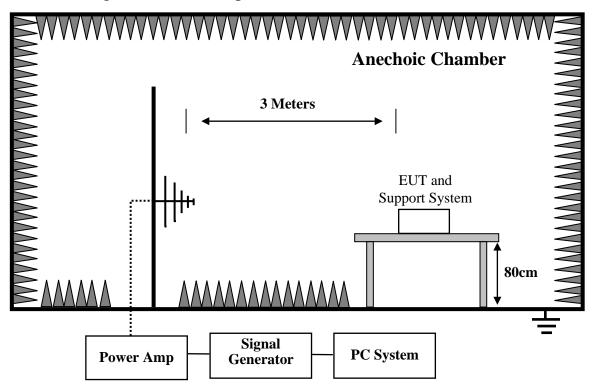
(3) Indirect discharge for horizontal coupling plane:

At least 20 single discharges (10 with positive and 10 negative with positive) were applied to the horizontal coupling plane, at points on each side of the EUT. The discharge electrode positions vertically at a distance of 0.1m from the EUT and with the discharge electrode touching the coupling plane.

(4) Indirect discharge for vertical coupling plane:

At least 20 single discharge (10 with positive and 10 negative with positive) were applied to the center of one vertical edge of the coupling plane. The coupling plane, of dimensions 0.5m X 0.5m, was placed parallel to, and positioned at a distance of 0.1m from the EUT. Discharges were applied to the coupling plane, with this plane in sufficient different positions that the four faces of the EUT are completely illuminated.

EUT	:	Laptop Guard			Test	est Date : 2020.07.15		
M/N	:	SZQ05-mini sun 1			Tem	Femperature : 24°C		
Test Engineer : Ben Sun				Humidity : 56%				
Test Voltage DC 5V From DC Power					Pressure : 101.3KPa			
Test M	ode :	Lighting						
Test R	esults :	PASS						
Discharge To Of Discharge Discharge					Perfor	Performance		
Voltage (kV)		Type Of Discharge	Dischargeable Points		oints	Required	Observation	
± 4		Contact	N/A		В	N/A		
± 8		Air	1		В	А		
± 4		HCP-Bottom	Edge of the HCP		В	А		
±4		VCP-Front	Center of the VCP		В	А		
±4		VCP-Left	Center of the VCP		В	A		
±4		VCP-Back	Center of the VCP		В	A		
± 4		VCP-Right	Center of the VCP		В	А		
		Dischar	ge Poir	nts Descrip	tion			
<u>1</u>	Port			<u>4</u>	/			
2				<u>5</u>	/			
<u>3</u>	/			<u>6</u>	/			
Note:	1. For the time interval between successive single discharges an initial value of one second.							
	2. For Air Discharge each Point Positive 25 times and negative 25 times discharge.							
	3. EUT is pure plastic shell, so is not apply to contact discharge.							
	4. Class A is no function loss.							


9.7.Electrostatic Discharge Test Results

10.RF FIELD STRENGTH SUSCEPTIBILITY TEST

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	vector Signal Generator	Agilent	E4438C	US44271917	2019.09.06	1 Year
2.	Power meter	Agilent	E4419B	GB40202122	2019.09.06	1 Year
3.	Power Sensor	Agilent	E9300A	MY41496625	2019.09.06	1 Year
4.	RF power Amplifier	OPHIR	5225R	1045	N/A	NCR
5.	RF power Amplifier	OPHIR	5273R	1018	N/A	NCR
6.	Antenna	SCHWARZBECK	STLP9128E- special	STLP9128E s#139	N/A	NCR
7.	Antenna	SCHWARZBECK	STLP9128E- special	STLP 9149 #456	N/A	NCR

10.1.Test Equipment

10.2.Block Diagram of Test Setup

10.3.RF Field Strength susceptibility Test Limits

Test Specifications	Test Level	Performance Criterion	
80MHz-1000MHz	3V/m (r.m.s.)	А	

Notes: 1. Test set-up reference IEC 61000-4-3:2006 + A1:2007 + A2:2010

10.4. Configuration of EUT on Test

The following equipment are installed on Electrostatic Discharge Test to meet the IEC 61000-4-3 requirements and operating regulations in a manner that tends to maximize its emission characteristics in normal application.

10.5.Operating Condition of EUT

- (1) Setup the EUT as shown as Section 10.2.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode and 15 minutes before taking the test.

10.6.Test Procedure

- (1) Testing was performed in a Fully anechoic chamber as recommended by IEC 61000-4-3.
 The EUT was placed on an 80 cm high non-conductive table located in the area of field uniformity. The radiating antenna was placed 3m in front of the EUT and Support
- (2) system, and dwell time of the radiated interference was controlled by an automated, computer-controlled system.

The signal source was stepped through the applicable frequency range at a rate no faster than 1% of the fundamental. The signal was amplitude modulated 80% over the

- (3) frequency range 80 MHz to 1GHz at a level of 3 V/m. The dwell time was set at 3 s. Field presence was monitored during testing via a field probe placed in close proximity to the EUT.
- (4) Throughout testing, the EUT was closely monitored for signs of susceptibility. The test was performed with the antennae oriented in both a horizontal and vertical polarization.

Condition of Test	Require of Test		
Test Fielded Strength	3 V/m		
Radiated Signal	80% amplitude modulated with a 1kHz sine wave		
Scanning Frequency	80 - 1000 MHz		
Sweeping time of radiated	0.0015 decade/s		
Dwell Time	1 Sec.		

(5) All the scanning conditions are as follows:

10.1.RF Field Strength susceptibility Test Limits

Test Specifications	Test Level	Performance Criterion
80MHz-1000MHz	3V/m (r.m.s.)	А

Notes: 1. Test set-up reference IEC 61000-4-3:2006 + A1:2007 + A2:2010

10.2.Configuration of EUT on Test

The following equipment are installed on RF Field Strength Susceptibility Test to meet the IEC 61000-4-3 requirements and operating regulations in a manner that tends to maximize its emission characteristics in normal application.

10.3.Operating Condition of EUT

- (1) Setup the EUT as shown as Section 10.2.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode and 15 minutes before taking the test.

10.4.Test Procedure

- (1) Testing was performed in a Fully anechoic chamber as recommended by IEC 61000-4-3.
 The EUT was placed on an 80 cm high non-conductive table located in the area of field uniformity. The radiating antenna was placed 3m in front of the EUT and Support
- (2) system, and dwell time of the radiated interference was controlled by an automated, computer-controlled system.

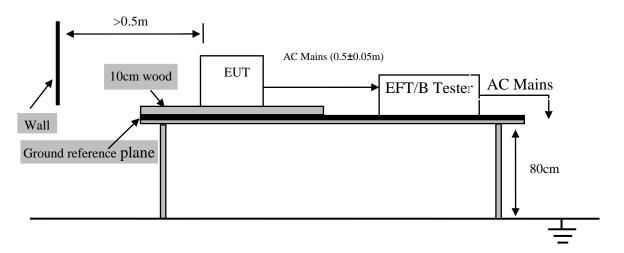
The signal source was stepped through the applicable frequency range at a rate no faster than 1% of the fundamental. The signal was amplitude modulated 80% over the

- (3) frequency range 80 MHz to 1GHz at a level of 3 V/m. The dwell time was set at 3 s. Field presence was monitored during testing via a field probe placed in close proximity to the EUT.
- (4) Throughout testing, the EUT was closely monitored for signs of susceptibility. The test was performed with the antennae oriented in both a horizontal and vertical polarization.

Condition of Test	Require of Test
Test Fielded Strength	3 V/m
Radiated Signal	80% amplitude modulated with a 1kHz sine wave
Scanning Frequency	80 - 1000 MHz
Sweeping time of radiated	0.0015 decade/s
Dwell Time	1 Sec.

(5) All the scanning conditions are as follows:

10.1.RF Field Strength Susceptibility Test Results


EUT	:	Laptop Guard Test D				: 2020.07.15	
M/N	:	SZQ05-mini s	un 1		Temperature	: 24°C	
Test Engineer	:	Ben Sun			Humidity : 56%		
Test Voltage	:	DC 5V From I	DC Power		Pressure	101.3KPa	
Test Mode	:	Lighting					
Test Results	:	PASS					
Field Strength	:	3V/m					
Modulation:		AM Dulse D			none 1 kHz 80%		
			Frequen	cy Range :80) MHz -1000MI	Hz	
Steps		1%					
		Hor	izontal	Ve	ertical	Result	
		Required	Observation	Required	Observation	(Pass / Fail)	
Front		А	А	А	А	Pass	
Right		А	А	А	А	Pass	
Rear		A	А	А	А	Pass	
Left A A A		А	Pass				
Remark: Class	A i	s no function lo	oss				

11.ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST

11.1.Test Equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal	Cal. Interval
1.	Multifunctio nal Compact Immunity Test system	3ctest	CCS 600	ES0801655	2019.09.05	1 Year
2.	Surge & EFT Coupling Decoupling Network	3ctest	SEPN 3832T	ES0951601	2019.09.05	1 Year
3.	Voltage variation and PF magnetic field regulating device	3ctest	VMT2216S	ES0441601	2019.09.06	1 Year
4.	Capacitive Coupling Clamp	3ctest	CCC 100	EC0441660	2019.09.06	1 Year

11.2.Block Diagram of Test Setup

11.3.Test Standard

EN 55014 -2:2015 (Severity Level 2 at 1kV)

11.4.Electrical Fast Transient/Burst Test Limits

Level	On Power Supply Lines	On I/O (Input/Output) Signal data and control lines
1.	0.5 kV	0.25 kV
2.	1 kV	0.5 kV
3.	2 kV	1 kV
4.	4 kV	2 kV
Х	Special	Special

Notes:

Test set-up reference IEC 61000-4-4:2012
 Performance criterion : B

11.5.Configuration of EUT on Test

The following equipment are installed on Electrostatic Discharge Test to meet the IEC 61000-4-4 requirements and operating regulations in a manner that tends to maximize its emission characteristics in normal application.

11.6.Operating Condition of EUT

- (1) Setup the EUT as shown as Section 12.2.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode and 15 minutes before taking the test.

11.7.Test Procedure

The EUT and its simulators were placed on the ground reference plane and were insulated from it by a wood support 0.1m + 0.01m thick. The ground reference plane was 1m*1m metallic sheet with 0.65mm minimum thickness. This reference ground plane was project

(1) beyond the EUT by at least 0.1m on all sides and the minimum distance between EUT and all other conductive structure, except the ground plane was more than 0.5m. All cables to the EUT was placed on the wood support, cables not subject to EFT/B was routed as far as possible from the cable under test to minimize the coupling between the cables.

12.7.1. For input and AC power ports:

The EUT was connected to the power mains by using a coupling device that couples the EFT interference signal to AC power lines. Both positive transients and negative transients of test voltage were applied during compliance test and the duration of the test can't less than 2 min.

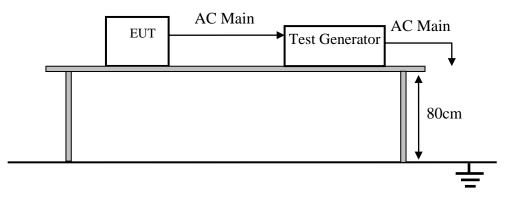
12.7.2. For signal lines and control lines ports:

No I/O ports. It's unnecessary to test.

12.7.3. For DC input and DC output power ports:

It's unnecessary to test.

11.8.Electrical Fast Transient/Burst immunity Test Results


EUT	:	Laptop Guard	Test Date	:	N/A	
M/N	:	SZQ05-mini sun 1	Temperature	:	N/A	
Test Engineer	:	N/A	Humidity	:	N/A	
Test Voltage	:	N/A	Pressure	:	N/A	
Test Mode : N/A						
Test Results : N/A						
Note: Not applicable for equipment operated with PC, Battery, or Power Supply.						

12.SURGE TEST

12.1.Test Equipments

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Multifunctional Compact Immunity Test system	3ctest	CCS 600	ES0801655	2019.09.05	1 Year
2.	Surge & EFT Coupling Decoupling Network	3ctest	SEPN 3832T	ES0951601	2019.09.05	1 Year
3.	Voltage variation and PF magnetic field regulating device	3ctest	VMT22 16S	ES0441601	2019.09.06	1 Year
4.	Capacitive Coupli ng Clamp	3ctest	CCC 100	EC0441660	2019.09.06	1 Year

12.2.Block Diagram of Test Setup

12.3.Surge Test Limits

Environmental phenomenon	Test specifications	Test set-up
Surge	1,2/50 (8/20) μs Tr/Td 2 kV line-to-earth with 12 Ω Impedance 1 kV line-to-line with 2 Ω Impedance	IEC 61000-4-5

Severity level

Severity Level	Open-Circuit Test Voltage+' kV+'
1+	0.5+
2+	1.0+
3⊷	2.0+
4.0	4.0~
***	Special₽

Performance criterion : B

12.4.Configuration of EUT on Test

The following equipment are installed on Electrostatic Discharge Test to meet the IEC 61000-4-5 requirements and operating regulations in a manner that tends to maximize its emission characteristics in normal application.

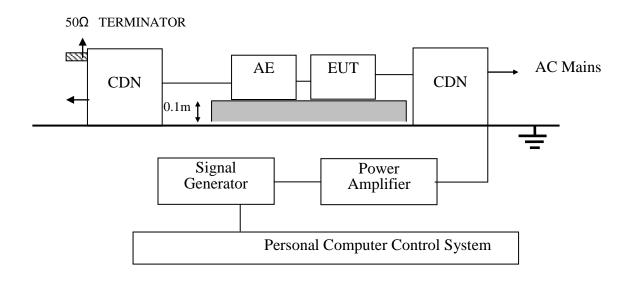
12.5.Operating Condition of EUT

- (1) Setup the EUT as shown as Section 13.2.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode and 15 minutes before taking the test.

12.6.Test Procedure

- (1) For line to line coupling mode, provide a 1.0kV 1.2/50us voltage surge (at open-circuit condition) and 8/20us current surge to EUT selected points.
- (2) At least 5 positive and 5 negative (polarity) tests with a maximum 1/min repetition rate are conducted during test.
- (3) Different phase angles are done individually.
- (4) Record the EUT operating situation during compliance test and decide the EUT immunity criterion for above each test.

12.7.Surge Test Results


EUT	:	Laptop Guard	Test Date : N/A			
M/N	:	SZQ05-mini sun 1	Temperature : N/A			
Test Engineer	:	N/A	Humidity : N/A			
Test Voltage	:	N/A	Pressure : N/A			
Test Mode	:	N/A				
Test Results : N/A						
Note: Not applicable for equipment operated with PC, Battery, or Power Supply.						

13.INJECTED CURRENTS SUSCEPTIBILITY TEST

Ite	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.
m						Interval
1.	Conducted	SKET	CITS_150	SK2019101	2019.11.08	1 Year
	Immunity test		K230M	001_CITS		
	System					
2.	Fixed Coaxial	CD	ATT-0675	120540086	2019.09.06	1 Year
	Attenuator					
	(6dB Attenuation)					
3.	coupling-decoupli	CD	CDN	2302	2019.09.06	1 Year
	ng network		M2/M3			
	(CDN)					
4.	Electromagnetic	CD	EM-Clamp	0513A0312	2019.09.05	1 Year
	Injection Clamp			01		
	(EMC-Clamp)					

13.1.Test Equipments

13.2.Block Diagram of Test Setup

13.3.Test Standard

EN 55014 -2: 2015 (Severity Level 2 at 3Vrms and frequency is from 0.15MHz to 230MHz)

13.4.Injected currents	susceptibility	Test Limits
------------------------	----------------	-------------

Level	Voltage Level (e.m.f.) V
1	1
2	3
3	10
X	Special

1. Test set-up reference IEC 61000-4-6:2013

2. Performance criterion: A

13.5.Configuration of EUT on Test

The following equipment are installed on Electrostatic Discharge Test to meet the IEC 61000-4-6 requirements and operating regulations in a manner that tends to maximize its emission characteristics in normal application.

13.6.Operating Condition of EUT

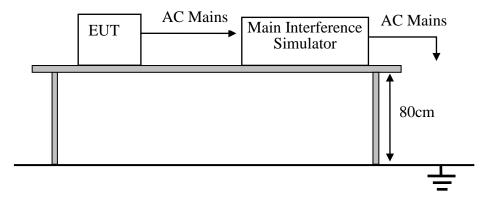
- (1) Setup the EUT as shown as Section 14.2.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode and 15 minutes before taking the test.

13.7.Test Procedure

Notes:

- (1) Let the EUT work in test mode and test it.
 The EUT are placed on an insulating support 0.1m high above a ground reference plane.
- (2) CDN (coupling and decoupling device) is placed on the ground plane about 0.3m from EUT. Cables between CDN and EUT are as short as possible, and their height above the ground reference plane shall be between 30 and 50 mm (where possible).
- (3) The disturbance signal described below is injected to EUT through CDN.
- (4) The EUT operates within its operational mode(s) under intended climatic conditions after power on.
- (5) The frequency range is swept from 0.150MHz to 230MHz using 3V signal level, and with the disturbance signal 80% amplitude modulated with a 1kHz sine wave.
- The rate of sweep shall not exceed 1.5*10-3decades/s. Where the frequency is swept
 incrementally, the step size shall not exceed 1% of the start and thereafter 1% of the preceding frequency value.
- Recording the EUT operating situation during compliance testing and decide the EUT
- (*immunity criterion*.

13.8.Injected currents susceptibility Test Results


EUT	: Laptop Guard	Test Date	:	N/A
M/N	: SZQ05-mini sun 1	Temperature	:	N/A
Test Engineer	: N/A	Humidity	:	N/A
Test Voltage	: N/A	Pressure	:	N/A
Test Mode	: N/A			
Test Results	: N/A			
Note: Not applicable for equipment operated with PC, Battery, or Power Supply.				

14. VOLTAGE DIPS AND INTERRUPTIONS TEST

14.1.Test Equipments

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal	Cal. Interval
1.	Multifunctional Compact Immunity Test system	3ctest	CCS 600	ES0801655	2019.09.05	1 Year
2.	Surge & EFT Coupling Decoupling Network	3ctest	SEPN 3832T	ES0951601	2019.09.05	1 Year
3.	Voltage variation and PF magnetic field regulating device	3ctest	VMT2216S	ES0441601	2019.09.06	1 Year
4.	Capacitive Coupl ing Clamp	3ctest	CCC 100	EC0441660	2019.09.06	1 Year

14.2.Block Diagram of Test Setup

14.3.Test Standard

EN 55014 -2: 2015

14.4.Voltage dips and interruptions Test Limits	
---	--

Test Level %UT	Voltage dip and short interruptions %UT	Performance Criterion	Duration (in period)
0	100	С	0.5P
40	60	С	10P
70	30	С	25P

Notes: Test set-up reference IEC 61000-4-11:2004

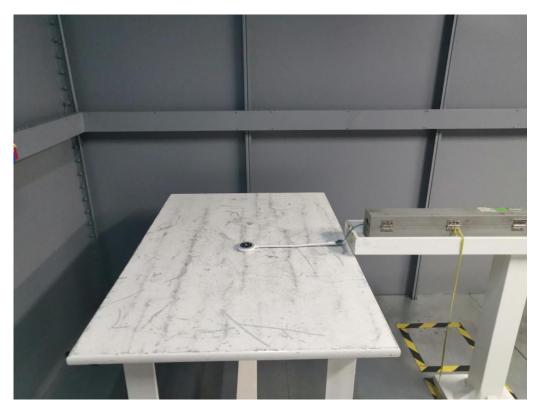
14.5.Configuration of EUT on Test

The following equipment are installed on Electrostatic Discharge Test to meet the IEC 61000-4-11 requirements and operating regulations in a manner that tends to maximize its emission characteristics in normal application.

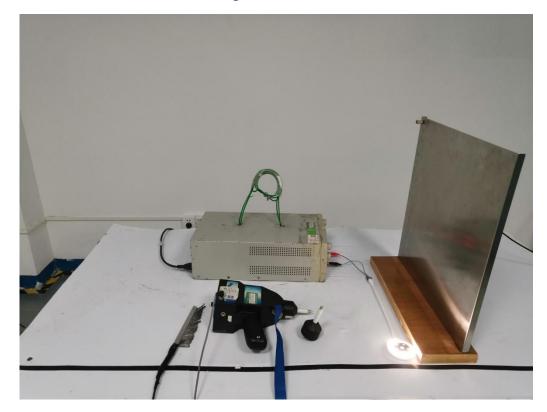
14.6.Operating Condition of EUT

- (1) Setup the EUT as shown as Section 15.2.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode and 15 minutes before taking the test.

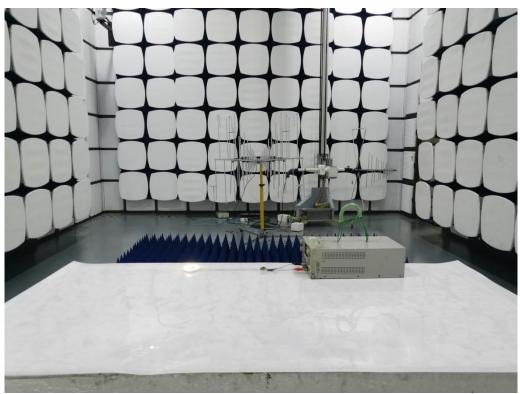
14.7.Test Procedure

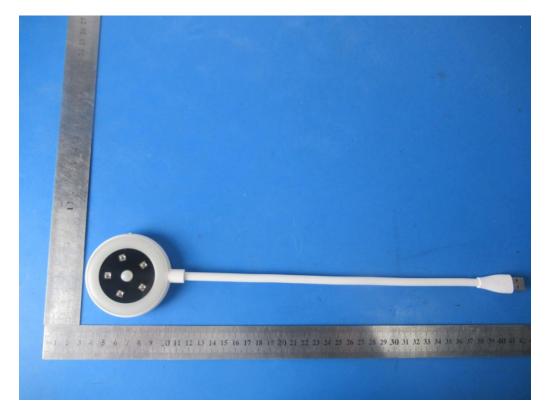

- (1) The interruption is introduced at selected phase angles with specified duration.
- (2) Record any degradation of performance.

14.8.Voltage dips and interruptions Test Results


EUT	:	Laptop Guard	Test Date : N/A
M/N	:	SZQ05-mini sun 1	Temperature : N/A
Test Engineer	:	N/A	Humidity : N/A
Test Voltage	:	N/A	Pressure : N/A
Test Mode	:	N/A	
Test Results	:	N/A	
Note: Not applicable for equipment operated with PC, Battery, or Power Supply.			

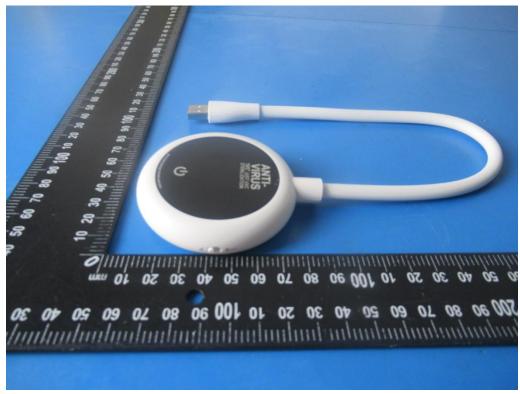
15.PHOTOGRAPH


15.1.Photo of Disturbance Power Test


15.2.Photos of Electrostatic Discharge Test

15.3.Photo of RF Field Strength Susceptibility Test

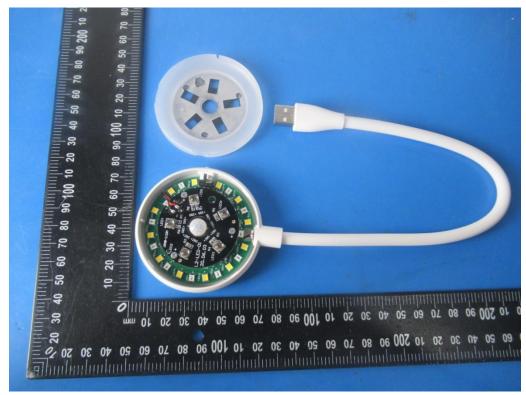
16.Photos Of The EUT


EUT View

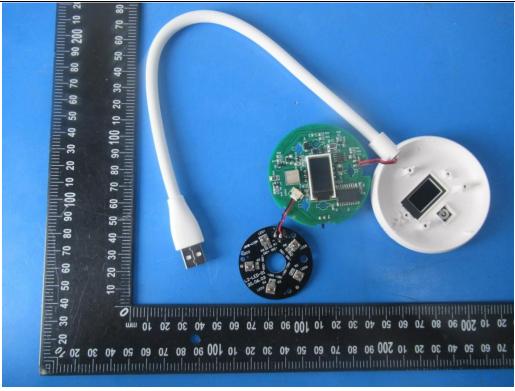
EUT View

EUT View

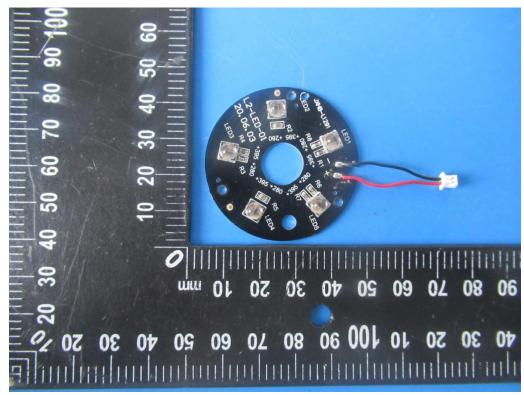
EUT View


EUT View

EUT View



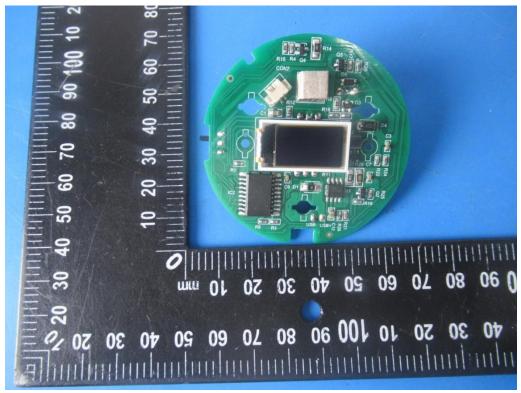
EUT View



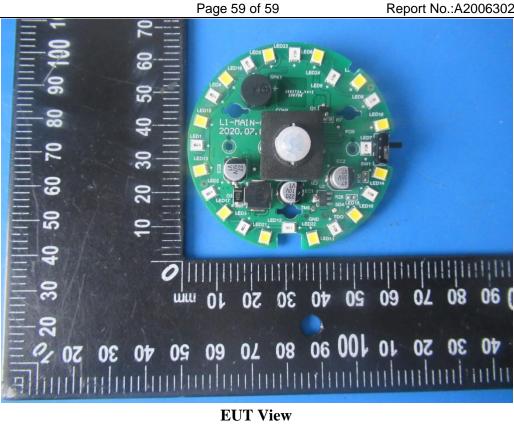
EUT View

Page 57 of 59

EUT View



EUT View


uiu O'L 30 50 30 50 10 100 30 80 10 90 90 70 30 50 20

Page 58 of 59

EUT View

EUT View

----END OF REPORT----